Soal 1: SPMB 2006 Kode 310
$\lim_{x\rightarrow \frac{1}{2} \pi} \frac{sin \ x \ tan \ (2x - \pi)}{2 \pi-4x}=. . .$
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3} \sqrt{3}$
(D) $1$
(E) $\sqrt{3}$
PEMBAHASAN:
$\lim_{x\rightarrow \frac{1}{2} \pi} \frac{sin \ x \ tan \ (2x - \pi)}{2 \pi-4x}$
$=\lim_{x\rightarrow \frac{1}{2} \pi} \frac{sin \ x \ -(tan \ (\pi-2x))}{2 \pi-4x}$
$=\lim_{x\rightarrow \frac{1}{2} \pi} \frac{-sin \ x \ tan \ (\pi-2x)}{2 (\pi-2x)}$
$=\lim_{x\rightarrow \frac{1}{2} \pi} \left (\frac{-sin \ x \ }{2} \times \frac{tan \ (\pi-2x) \ }{(\pi-2x)} \right )$
$=\frac{-sin (\frac{1}{2} \pi)}{2} \times 1$
$=-\frac{1}{2}$
Pilihan jawabannya adalah (A)
Soal 2: SPMB 2006 Kode 402
$\lim_{x\rightarrow 0} \frac{x^2 \sqrt{4-x^3}}{cos \ x \ - cos \ 3x \ }=. . .$
(A) $-\frac{3}{2}$
(B) $-\frac{1}{2}$
(C) $0$
(D) $\frac{1}{2}$
(E) $\frac{3}{2}$
PEMBAHASAN:
Kita gunakan identitas trigonometri:
$cos \ A \ - sin \ B \ = -2 sin \left (\frac{A+B}{2} \right )sin \left (\frac{A-B}{2} \right )$
$cos \ x \ - sin \ 3x \ = -2 sin \left (\frac{x+3x}{2} \right )sin \left (\frac{x-3x}{2} \right )$
$cos \ x \ - sin \ 3x \ = -2 sin \ 2x \ sin \ (-x) \ = 2 sin \ 2x \ sin \ x \ $
$\lim_{x\rightarrow 0} \frac{x^2 \sqrt{4-x^3}}{cos \ x \ - cos \ 3x \ }$
$=\lim_{x\rightarrow 0} \frac{x^2 \sqrt{4-x^3}}{2 sin \ 2x \ sin \ x \ }$
$= \lim_{x\rightarrow 0} \left (\frac{x^2}{2 sin \ 2x \ sin \ x \ } \times \sqrt{4-x^3} \right )$
$= \frac{1}{2.2} \times \sqrt{4-0^3}$
$=\frac{1}{4} \times 2 = \frac{1}{2}$
Pilihan jawabannya adalah (D)
Soal 3: UM UGM 2005 Kode 812
$\lim_{x\rightarrow 0} \frac{x tan \ 5x \ }{cos \ 2x \ - cos \ 7x \ }=. . .$
(A) $\frac{1}{9}$
(B) $-\frac{1}{9}$
(C) $\frac{2}{9}$
(D) $-\frac{2}{9}$
(E) $0$
PEMBAHASAN:
$cos \ A \ - sin \ B \ = -2 sin \left (\frac{A+B}{2} \right )sin \left (\frac{A-B}{2} \right )$
$cos \ 2x \ - sin \ 7x \ = -2 sin \left (\frac{2x+7x}{2} \right )sin \left (\frac{2x-7x}{2} \right )$
$cos \ 2x \ - sin \ 7x \ = -2 sin \ (\frac{9x}{2}) \ sin \ (\frac{-5x}{2}) \ $
$cos \ 2x \ - sin \ 7x \ = 2 sin \ (\frac{9x}{2}) \ sin \ (\frac{5x}{2}) \ $
$\lim_{x\rightarrow 0} \frac{x tan \ 5x \ }{2 sin \ (\frac{9x}{2}) \ sin \ (\frac{5x}{2}) \ }$
$=\lim_{x\rightarrow 0} \left (\frac{x}{2 sin \ (\frac{9x}{2}) \ } \times \frac{tan \ 5x \ }{sin \ (\frac{5x}{2}) \ } \right ) $
$=\frac{1}{2 \ . \ \frac{9}{2}} \times \frac{5}{\frac{5}{2}} $
$=\frac{1}{9} \times 2 = \frac{2}{9}$
Pilihan jawabannya adalah (C)
Soal 4: SPMB 2005 Kode 780
$\lim_{x\rightarrow 1} \frac{(x^2 + x - 2)sin(x-1)}{x^2 - 2x +1}=. . .$
(A) $4$
(B) $3$
(C) $0$
(D) $-\frac{1}{4}$
(E) $-\frac{1}{2}$
PEMBAHASAN:
$\lim_{x\rightarrow 1} \frac{(x^2 + x - 2)sin(x-1)}{x^2 - 2x +1}$
$=\lim_{x\rightarrow 1} \frac{(x+ 2)(x-1)sin(x-1)}{(x-1}^2$
$=\lim_{x\rightarrow 1} \frac{(x+ 2)(x-1)sin(x-1)}{(x-1)(x-1)}$
$=\lim_{x\rightarrow 1} \left (\frac{(x+ 2)(x-1)}{(x-1)} \times \frac{sin(x-1)}{(x-1)} \right )$
$=\lim_{x\rightarrow 1} (x+ 2) \times \lim_{x\rightarrow 1}\frac{sin(x-1)}{(x-1)}$
$=1+ 2 \times 1 = 3$
Pilihan jawaban yang sesuai adalah (B)
Soal 5: UM UGM 2004 Kode 322
$\lim_{x\rightarrow 1} \frac{tan(x-1)sin(1- \sqrt{x})}{x^2-2x+1}=. . .$
(A) $-1$
(B) $-\frac{1}{2}$
(C) $0$
(D) $\frac{1}{2}$
(E) $1$
PEMBAHASAN:
$\lim_{x\rightarrow 1} \frac{tan(x-1)sin(1- \sqrt{x})}{x^2-2x+1}$
$=\lim_{x\rightarrow 1} \frac{tan(x-1)sin(1- \sqrt{x})}{(x-1)(x-1)}$
$=\lim_{x\rightarrow 1} \frac{tan(x-1)sin(1- \sqrt{x})}{-(x-1)(1-x)}$
$=\lim_{x\rightarrow 1} \frac{tan(x-1)sin(1- \sqrt{x})}{-(x-1)(1-\sqrt{x})(1+\sqrt{x})}$
$=\lim_{x\rightarrow 1} \left (\frac{tan(x-1)}{x-1} \times \frac{sin(1- \sqrt{x})}{(1- \sqrt{x})} \times \frac{1}{-(1+\sqrt{x})} \right )$
$= \lim_{x\rightarrow 1}\frac{tan(x-1)}{x-1} \times \lim_{x\rightarrow 1} \frac{sin(1- \sqrt{x})}{(1- \sqrt{x})} \times \lim_{x\rightarrow 1}\frac{1}{-(1+\sqrt{x})}$
$=1 \times 1 \times \frac{1}{-(1+\sqrt{1})}=-\frac{1}{2}$
Pilihan jawaban yang sesuai adalah (B)
Soal 6: UM STIS 2011
Jika $\lim_{x\rightarrow 0} \frac{x^a \ sin^4x}{sin^6x}=1$, maka nilai $a$ yang memenuhi adalah . . .
(A) $1$
(B) $2$
(C) $3$
(D) $4$
(E) $5$
PEMBAHASAN:
Kita gunakan konsep limit trogonometri dasar
$\lim_{x\rightarrow 0} \frac{sin \ ax \ }{bx}=\frac{a}{b}$ atau
$\lim_{x\rightarrow 0} \frac{ax}{sin \ bx \ }=\frac{a}{b}$, maka
$\lim_{x\rightarrow 0} \frac{x^a \ sin^4x}{sin^2x sin^4x}=1$
$\lim_{x\rightarrow 0} \frac{x^a \ }{sin^2x}=1$
Agar nilai limit fungsi di atas benar adalah $1$, maka nilai $a = 2$
Pilihan jawabannya adalah (B)
Soal 7: UTBK-SBMPTN 2019
Nilai $\lim_{x\rightarrow 0} \frac{cot \ 2x \ - csc \ 2x \ }{cos \ 3x \ tan\frac{1}{3}x}=. . .$
(A) $3$
(B) $2$
(C) $0$
(D) $-2$
(E) $-3$
PEMBAHASAN:
Kita gunakan konsep limit trogonometri dasar
- $\lim_{x\rightarrow 0} \frac{tan \ ax \ }{bx}=\frac{a}{b}$
- $\lim_{x\rightarrow 0} \frac{tan \ ax \ }{sin \ bx \ }=\frac{a}{b}$
- $\lim_{x\rightarrow 0} \frac{sin \ ax \ }{sin \ bx \ }=\frac{a}{b}$
$=\lim_{x\rightarrow 0} \frac{\frac{cos \ 2x \ }{sin \ 2x \ } - \frac{1}{sin \ 2x \ }}{cos \ 3x \ tan\frac{1}{3}x}$
$=\lim_{x\rightarrow 0} \frac{\frac{cos \ 2x \ -1}{sin \ 2x \ }}{cos \ 3x \ tan\frac{1}{3}x}$
$=\lim_{x\rightarrow 0} \frac{cos \ 2x \ -1}{cos \ 3x \ tan\frac{1}{3}x sin \ 2x \ }$
$=\lim_{x\rightarrow 0} \frac{1-sin^2 \ x \ -1}{cos \ 3x \ tan\frac{1}{3}x sin \ 2x \ }$
$=\lim_{x\rightarrow 0} \frac{-2sin^2 \ x \ }{cos \ 3x \ tan\frac{1}{3}x sin \ 2x \ }$
$=\frac{-2.1.1}{cos \ 0 \ .\frac{1}{3}.2}$
$=\frac{-2}{\frac{2}{3}}=-3$
Soal 8: SNMPTN 2010 Kode 546
$\lim_{x\rightarrow 0} \frac{\sqrt{4x}}{\sqrt{sin \ 2x \ }}=. . .$
(A) $\sqrt{2}$
(B) $1$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
(E) $0$
PEMBAHASAN:
Kita gunakan konsep limit trogonometri dasar $\lim_{x\rightarrow 0} \frac{ax}{sin \ bx \ }=\frac{a}{b}$ dan teorema limit $\lim_{x\rightarrow c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\rightarrow c}f(x)}$, maka
$\lim_{x\rightarrow 0} \frac{\sqrt{4x}}{\sqrt{sin \ 2x \ }}=\lim_{x\rightarrow 0} \sqrt{\frac{4x}{sin \ 2x \ }}$
$=\sqrt{\lim_{x\rightarrow 0} \frac{4x}{sin \ 2x \ }}$
$=\sqrt{\frac{4}{2}}$
$=\sqrt{2}$
Pilihan jawaban yang sesuai adalah (A)
Soal 9: SPMB 2006 Kode 111
$\lim_{x\rightarrow \frac{1}{2} \pi} \frac{\left (x- \frac{1}{2} \pi \right )^2 sin \ x \ }{cos^2 \ x \ }=. . .$
(A) $-1$
(B) $-\frac{1}{2}$
(C) $0$
(D) $1$
(E) $2$
PEMBAHASAN:
$\lim_{x\rightarrow \frac{1}{2} \pi} \frac{\left (x- \frac{1}{2} \pi \right )^2 sin \ x \ }{cos^2 \ x \ }$
$=\lim_{x\rightarrow \frac{1}{2} \pi} \frac{\left (\frac{1}{2} \pi -x \right )^2 sin \ x \ }{sin^2 \ \left (\frac{1}{2} \pi -x \right ) \ }$
$=\lim_{x\rightarrow \frac{1}{2} \pi} \left [\frac{\left (\frac{1}{2} \pi -x \right )^2 sin \ x \ }{sin^2 \ \left (\frac{1}{2} \pi -x \right ) \ } \right ]$
$=1 \times sin\frac{1}{2}\pi$
$=1 \times 1 = 1$
Pilihan jawaban yang sesuai adalah (D)
Soal 10: UM UGM 2005 Kode 812
$\lim_{x\rightarrow \frac{1}{4} \pi} \frac{\left (x - \frac{\pi}{4} \right )tan \left ( 3x-\frac{3 \pi}{4} \right )}{2(1-sin \ 2x \ )}=. . .$
(A) $0$
(B) $-\frac{3}{2}$
(C) $\frac{3}{2}$
(D) $-\frac{3}{4}$
(E) $\frac{3}{4}$
PEMBAHASAN:
Kita gunakan konsep identitas trogonometri dasar
- $cos(\frac{1}{2}\pi - x) = sin \ x \ $
- $cos \ 2x \ = cos^2 \ x \ - sin^2 \ x \ $
- $cos \ 2x \ = 1 - 2 sin^2 \ x \ $
- $cos \ x \ = 1 - 2 sin^2 \ \frac{1}{2}x \ $
$=\lim_{x\rightarrow \frac{1}{4} \pi} \frac{\left (x - \frac{\pi}{4} \right )\left (-tan \left ( \frac{3 \pi}{4}-3x \right ) \right )}{2\left (1-cos\left (\frac{1}{2}\pi-2x \right ) \right )}$
$=\lim_{x\rightarrow \frac{1}{4} \pi} \frac{-\left (x - \frac{\pi}{4} \right )tan \ 3 \left ( \frac{\pi}{4}-x \right )}{2\left [2sin^2 \left ( \frac{1}{2}\left (\frac{1}{2}\pi-2x \right ) \right ) \right ]}$
$=\lim_{x\rightarrow \frac{1}{4} \pi} \frac{\left (\frac{\pi}{4}-x \right )tan \ 3 \left ( \frac{\pi}{4}-x \right )}{4sin^2 \left (\frac{1}{4}\pi-x \right ) }$
$=\lim_{x\rightarrow \frac{1}{4} \pi} \left [\frac{\left (\frac{\pi}{4}-x \right )}{4sin \left (\frac{1}{4}\pi-x \right )} \times \frac{tan \ 3 \left ( \frac{\pi}{4}-x \right )}{sin \left (\frac{1}{4}\pi-x \right ) } \right ]$
$=\frac{1}{4} \times \frac{3}{1}$
$=\frac{3}{4}$
Pilihan jawaban yang sesuai adalah (E)
Post a Comment for "Soal dan Pembahasan Limit Fungsi Trigonometri"
Sobat Ayo Sekolah Matematika! Berikan Komentar di kolom komentar dengan bahasa yang sopan dan sesuai isi konten...Terimasih untuk kunjunganmu di blog ini, semoga bermanfaat!