Teorema:
- $\sqrt[n]{a^n} = a$, jika n ∊ ganjil
- $\sqrt[n]{a^n}=|a|=\left\{\begin{matrix}a, & bila \ a \geq 0 \ dan \ n \ genap \\ -a, & bila \ a < 0 \ dan \ n \ genap\end{matrix}\right.$
- $\sqrt[n]{0} = 0$
- $\sqrt[n]{a^{mn+p}b^q} = a^m \sqrt[n]{a^pb^q}$, p < n dan q > n
- $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$
- $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$
- $\sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[m]{a}}$
- $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$
- $\sqrt[m]{a^n} = (\sqrt[m]{a})^n$
- $\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$
Contoh Soal 1
a. $\sqrt{72}$ b. $\sqrt[3]{1.296}$ | c. $\sqrt[4]{576a^{17} b^8 c^9}$ d. $\sqrt[n]{a^{10n+3}}$ |
a. $\sqrt{72}$
= $\sqrt{72}= \sqrt{36.2} = \sqrt{6^2. 2}= 6 \sqrt{2}$
b. $\sqrt[3]{1.296}= \sqrt[3]{2^4 \times 3^4}$
= $2 \times 3 \sqrt[3]{2 \times 3}$
= $2 \times \sqrt[3]{2} \times 3 \times \sqrt[3]{3}= 6 \sqrt[3]{6}$
c. $\sqrt[4]{576a^{17} b^8 c^9}= \sqrt[4]{2^6 3^2 a^{17} b^8 c^9}$
= $\sqrt[4]{2^4 a^{16} b^8 c^8} \times \sqrt[4]{2^2 3^2 ac}$
= $2a^4c^2 \sqrt[4]{36ac}$
d. $\sqrt[n]{a^{10n+3}} = \sqrt[n]{a^{10n}. a^3}$
= $\sqrt[n]{a^{10n}} \times \sqrt[n]{a^3}=a^{10} \sqrt[n]{a^3}$
Contoh Soal 2
Sederhanakanlah!
a. $\sqrt{x^2 +2x+1}$
b. $a+2b+ \sqrt{a^2 -4ab +4b^2}$, untuk a = 2 dan b = 4.
Jawab:
a. $\sqrt{x^2 +2x+1}= \sqrt{(x+1)^2}=|x+1|$
b. $a+2b+ \sqrt{a^2 -4ab +4b^2}$
= $a+2b+ \sqrt{(a-2b)^2}$
= $a+2b+ |a-2b|$, jika a ≤ 2b maka
= $a+2b- (a-2b)$
= $a+2b-a+2b=4b = 16$
Contoh Soal 3
Ubahlah ke dalam bentuk radikal penuh, yaitu radikal dengan koefisien 1.
a. $3\sqrt{5}$ b. $4x^2 \sqrt[3]{y^2}$ | c. $\frac{x-y}{x+y} \sqrt{\frac{x+y}{x-y}}$ |
a. $3\sqrt{5}= \sqrt{3^2 \times 5} = \sqrt{45}$
b. $4x^2 \sqrt[3]{y^2} = \sqrt[3]{(4x^2)^3 y^2} = \sqrt[3]{64x^6y^2}$
c. $\frac{x-y}{x+y} \sqrt{\frac{x+y}{x-y}}$
= $\sqrt{\left( \frac{x-y}{x+y} \right)^2 \times \frac{x+y}{x-y}}$
= $\sqrt{ \frac{(x-y)^2}{(x+y)^2} \times \frac{x+y}{x-y}}$
= $\sqrt{\frac{x-y}{x+y}}$
Contoh Soal 4
Sederhanakan atau jabarkanlah.
a. $\sqrt{\frac{5}{6}}$ b. $20 \sqrt{\frac{19}{50}}$ c. $\sqrt[12]{\frac{c^7}{a^7b^{10}}}$ d. $\frac{1}{\sqrt[3]{x^2y^5}}$ | e. $\sqrt[3]{\sqrt{4.096x^{12}y^{27}}}$ f. $\sqrt[5]{\sqrt[3]{5^{30}a^{40}b^{25}}}$ g. $\sqrt[8]{x^2y^6}$ h. $\sqrt[15]{32a^{10}b^5c^{25}}$ |
a. $\sqrt{\frac{5}{6}} = \sqrt{\frac{5}{6} \times \frac{6}{6}} = \sqrt{\frac{30}{6^2}}$
= $\frac{\sqrt{30}}{\sqrt{6^2}} = \frac{1}{6} \sqrt{30}$
b. $20 \sqrt{\frac{19}{50}}=20 \sqrt{\frac{19}{50} \times \frac{2}{2}} = 20 \sqrt{\frac{38}{100}}$
= $20 \frac{\sqrt{38}}{\sqrt{100}}=20 \frac{\sqrt{38}}{10} = 2 \sqrt{38}$
c. $\sqrt[12]{\frac{c^7}{a^7b^{10}}}= \sqrt[12]{\frac{c^7}{a^7b^{10}} \times \frac{a^5b^2}{a^5b^2}}$
= $\sqrt[12]{\frac{a^5b^2c^7}{a^{12}b^{12}}} = \frac{\sqrt[12]{a^5b^2c^7}}{\sqrt[12]{a^{12}b^{12}}}$
= $\frac{\sqrt[12]{a^5b^2c^7}}{ab}= \frac{1}{ab} \sqrt[12]{a^5b^2c^7}$
d. $\frac{1}{\sqrt[3]{x^2y^5}} = \frac{1}{\sqrt[3]{x^2y^5}} \times \frac{\sqrt[3]{xy}}{\sqrt[3]{xy}}$
= $\frac{\sqrt[3]{xy}}{\sqrt[3]{x^3y^6}} = \frac{\sqrt[3]{xy}}{xy^2}= \frac{1}{xy^2} \sqrt[3]{xy}$
e. $\sqrt[3]{\sqrt{4.096x^{12}y^{27}}} = \sqrt[6]{2^{12}x^{12}y^{27}}$
= $2^2x^2y^4 \sqrt[6]{y^3}=4x^2 y^4 \sqrt{y}$
f. $\sqrt[5]{\sqrt[3]{5^{30}a^{40}b^{25}}}= \sqrt[15]{5^{30}a^{40}b^{25}}$
= $5^2a^2b \sqrt[15]{a^{10}b^{10}}=25a^2b \sqrt[15]{a^{10}b^{10}}$
g. $\sqrt[8]{x^2y^6} = \sqrt[4]{xy^3}$
h. $\sqrt[15]{32a^{10}b^5c^{25}}= \sqrt[15]{2^5 a^{10}b^5 c^{25}}$
= $\sqrt[3]{2a^2bc^5} = c\sqrt[3]{2a^2bc^2}$
Post a Comment for "Menyederhanakan Bentuk Akar dan Pembahasan Soal"
Sobat Ayo Sekolah Matematika! Berikan Komentar di kolom komentar dengan bahasa yang sopan dan sesuai isi konten...Terimasih untuk kunjunganmu di blog ini, semoga bermanfaat!