Strategi Smart Untuk Menyelesaikan Limit Fungsi Trigonometri
1.limx→0sinaxbx=ab 2.limx→0axsinbx=ab 3.limx→0tanaxbx=ab 4.limx→0axtanbx=ab 5.limx→0sinaxsinbx=ab 6.limx→0tanaxtanbx=ab 7.limx→0sinaxtanbx=ab 8.limx→0tanaxsinbx=ab 9.limx→0sinax.tanbxcx2=abc 10.limx→0sinax.tanbxcx.sindx=abcd | 11.limx→0sinax.tannbxcxn.sindx=abncd 12.limx→0cosax−cosbxcx2=b2−a22c 13.limx→0cx2cosax−cosbx=2cb2−a2 14.limx→01−cosbxcx2=b22c 15.limx→01−cosbxcx.sindx=b22cd 16.limx→01−cosbxsin2dx=b22d2 17.limx→01−cosbxcx.tandx=b22cd 18.limx→01−cosbxtan2dx=b22d2 19.limx→0tanax−sinaxx3=a32 20.limx→0x3tanax−sinax=2a3 21.limx→0ax±sinbxcx±sindx=a±bc±d |
Hitunglah setiap limit berikut ini.
a.limx→0sin5x2x=52 b.limx→04xsin5x=45 c.limx→0sin2xsin12x=212=4 | d.limx→0tan25xx2=52=25 e. limx→0tan2xsin3x=23 f.limx→0tan5xtan3x=53 |
Contoh Soal 2
a.limx→0cos2x−1x2=02−222=−2 b.limx→0x+sin3xx−sin2x=1+31−2=−4 c.limx→0[sin2x−tan2xx3]2=(232)2=16 d.limx→0sin32xtan312x=(212)3=64 |