Sifat-sifat Komposisi Fungsi

a. Operasi pada komposisi fungsi pada umumnya tidak bersifat komutiatif:

(f ○ g)(x) ≠ (g ○ f)(x)

b. Operasi komposisi pada fungsi bersifat asosiatif, artinya jika f : A → B, g : B  C, dan h : C  D, maka h ○ g ○ f : A  D, sehingga

(h ○ g ○ f)(x) = (h ○ (g ○ f)(x) = ((h ○ g) ○ f)(x)


Contoh Soal Sifat-sifat Komposisi Fungsi

Contoh 1

Diberikan f(x) = x + 1, g(x) = x2, dan h(x) = 3x. Jika I(x) = x adalah fungsi identitas, tentukan apakah:

a. (f ○ g)(x) = (g ○ f)(x)

b. (h ○ (g ○ f))(x) = (h ○ (g ○ f))(x)

c. (I ○ f)(x) = (f ○ I)(x) = f(x)

Jawab:

a. (f ○ g)(x) = f(g(x)) = f(x2) = x2 + 1

(g ○ f)(x) = g(f(x)) = g(x + 1) = (x + 1)2

Terlihat bahwa (f ○ g)(x) ≠ (g ○ f)(x)

b. Misalkan k(x) = (g ○ f)(x) = g(f(x))

= g(x + 1)

= (x + 1)2

(h ○ (g ○ f)(x) = (h ○ k)(x)

= h(k(x))

= h((x + 1)2)

= 3(x + 1)2

Misalkan p(x) = (h ○ g)(x)

= h(g(x))

= h(x2) = 3x2

((h ○ g) ○ f)(x) = (p ○ f)(x)

= p(x + 1)

= 3(x + 1)2

Terlihat bahwa (h ○ (g ○ f))(x) = (h ○ (g ○ f))(x)

c. (I ○ f)(x) = I(f(x)) = I(x + 1) = x + 1

(f ○ I)(x) = f(I(x)) = f(x) = x + 1

Terlihat bahwa (I ○ f)(x) = (f ○ I)(x) = f(x)

dengan I(x) adalah fungsi identitas


Contoh 2

Jika f(x) = x – 3 dan (g ○ f)(x) = (x + 3)2, tentukan nilai g(–2).

Jawab:

Strategi 1:

(g ○ f)(x) = (x + 3)2

g(f(x)) = x2 + 6x + 9

g(x – 3) = x2 + 6x + 9

g(x – 3) = (x – 3)2 + 6x – 9 + 6x + 9

g(x – 3) = (x – 3)2 + 12(x – 3) + 36

g(x) = x2 + 12x + 36

g(–2) = (–2)2 + 12(–2) + 26 = 16

Jadi, nilai g(–2) = 16

Strategi 2:

(g ○ f)(x) = (x + 3)2

g(f(x)) = (x + 3)2

g(x – 3) = (x + 3)2

Misalkan t = x – 3 à x = t + 3, sehingga

g(t) = (t + 3 + 3)2

g(t) = t2 + 12t + 36

g(–2) = (–2)2 + 12(–2) + 36 = 16

Strategi 3:

(g ○ f)(x) = (x + 3)2

g(f(x)) = (x + 3)2

g(x – 3) = (x + 3)2

g(x) = {(x + 3) + 3}2

g(x) = x2 + 12x + 36

g(–2) = (–2)2 + 12(–2) + 36 = 16

KOMPOSISI FUNGSI DAN INVERS FUNGSI

Post a Comment for " Sifat-sifat Komposisi Fungsi"