Nilai atau Besar dari tan 11¼°

Nilai atau Besar dari tan 11¼ °

Bagaimana mencari nilai pasti dari tan 11¼ ° menggunakan nilai cos 45 °?

Untuk semua nilai sudut A kita tahu bahwa,

2 sin2$\frac{A}{2}$ = 1 – cos A

Dan untuk semua nilai sudut A berlaku juga

2 sin $\frac{A}{2}$$\frac{A}{2}$

maka,

tan 11¼° = $\frac{sin 11\frac{1}{4}^0}{cos 11\frac{1}{4}^0}$

tan 11¼° = $\frac{sin 11\frac{1}{4}^0}{cos 11\frac{1}{4}^0}\times  \frac{2sin 11\frac{1}{4}^0}{2sin 11\frac{1}{4}^0}$

               = $\frac{2sin^2 11\frac{1}{4}^0}{2cos 11\frac{1}{4}^0sin 11\frac{1}{4}^0}$

               = $\frac{1-cos22\frac{1}{2}^0}{sin22\frac{1}{2}^0}$

               = $\frac{1-\sqrt{\frac{1}{2}(1+cos45^0)}}{\sqrt{\frac{1}{2}(1-cos45^0)}}$

               = $\frac{\sqrt{2}-\sqrt{1+cos45^0}}{\sqrt{1-cos45^0}}$

               = $\frac{\sqrt{2}-\sqrt{1+\frac{1}{\sqrt{2}}}}{\sqrt{1-\frac{1}{\sqrt{2}}}}$

               = $\frac{\sqrt{2}-\sqrt{\frac{\sqrt{2}+1}{\sqrt{2}}}}{\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}}}}$

               = $\frac{\sqrt{2\sqrt{2}}-\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}$

               = $\frac{\sqrt{2\sqrt{2}}-\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}\times \frac{\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}+1}}$

               = $\frac{\sqrt{2\sqrt{2}}\sqrt{\sqrt{2}+1}-\sqrt{(\sqrt{2}+1)^2}}{\sqrt{(\sqrt{2}-1)(\sqrt{2}+1)}}$

               = $\frac{\sqrt{2\sqrt{2}(\sqrt{2}+1)}-(\sqrt{2}+1)}{\sqrt{2-1}}$

tan 11¼° $\sqrt{4+2\sqrt{2}-(\sqrt{2}+1)}$

Post a Comment for "Nilai atau Besar dari tan 11¼°"