Soal Trigonometri dan pembahasannya (Jumlah atau Selisih menjadi bentuk perkalian) 2

 Contoh 7. Buktikan bahwa, sin 20° + sin 140° - cos 10° = 0

Jawab:

sin 20° + sin 140° - cos 10°

           = 2 ∙ sin $\frac{1}{2}$(140° + 20°) cos $\frac{1}{2}$(140° - 20°) - cos 10°,

[Karena sin C + sin D = 2 sin $\frac{1}{2}$(C + D) cos $\frac{1}{2}$(C - D )]

           = 2 sin 80° ∙ cos 60° - cos 10°

           = 2 ∙ sin (90° - 10°) ∙ $\frac{1}{2}$ - cos 10° [Karena, cos 60° = 1/2]

           = cos 10° - cos 10°

           = 0. Terbukti


Contoh 8. Buktikan bahwa cos 20 ° cos 40 ° cos 80 ° = $\frac{1}{8}$

Jawab:

cos 20° cos 40° cos 80°

= $\frac{1}{2}$ cos 40° (2 cos 80° cos 20°)

= $\frac{1}{2}$ cos 40° [cos (80° + 20°) + cos (80° - 20°)]

= $\frac{1}{2}$ cos 40° (cos 100° + cos 60°)

= $\frac{1}{2}$ cos 40° (cos 100° + $\frac{1}{2}$)

= $\frac{1}{2}$ cos 40° cos 100° + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ (2 cos 40° cos 100°) + $\frac{1}{4}$ cs 40°

= $\frac{1}{4}$ [cos (40° + 100°) + cos (40° - 100°)] + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ [cos 140° + cos (-60°)] + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ [cos 140° + cos 60°] + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ [cos 140° + $\frac{1}{2}$] + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ cos 140° + $\frac{1}{8}$ + $\frac{1}{4}$ cos 40°

= $\frac{1}{4}$ cos (180 ° - 40 °) + $\frac{1}{8}$ + $\frac{1}{4}$ cos 40 °

= - $\frac{1}{4}$ cos 40 ° + $\frac{1}{8}$ + $\frac{1}{4}$ cos 40 °

= $\frac{1}{8}$. Terbukti


Contoh 9. Buktikan bahwa, sin 20° sin 40° sin 60° sin 80° = $\frac{3}{16}$

Jawab:

sin 20° sin 40° sin 60° sin 80°

           = sin 20° ∙ sin 40° ∙ $\frac{\sqrt{3}  }{2}$ ∙ sin 80°

           = $\frac{\sqrt{3}  }{4}$ ∙ sin 20 ° (2 sin 40° sin 80 °)

           = $\frac{\sqrt{3}  }{4}$ ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)],

[Karena 2 sin A sin B = cos (A - B) - cos (A + B)]

           = $\frac{\sqrt{3}  }{4}$ ∙ sin 20° [cos 40° - cos 120°]

           = $\frac{\sqrt{3}  }{8}$ [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)],

[Karena, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]

           = $\frac{\sqrt{3}  }{8}$ [sin (40° + 20°) - sin (40° - 20°) + sin 20°]

           = $\frac{\sqrt{3}  }{8}$ [sin 60° - sin 20° + sin 20°]

           = $\frac{\sqrt{3}  }{8}$ ∙ $\frac{\sqrt{3}  }{2}$

           = $\frac{3}{16}$. Terbukti


Contoh 10. Buktikan bahwa, 

$\frac{sin \phi  sin 9\phi + sin 3\phi sin 5\phi}{sin \phi cos 9\phi + sin 3\phi cos 5\phi} = tan 6\phi$

Jawab:

$\frac{sin \phi  sin 9\phi + sin 3\phi sin 5\phi}{sin \phi cos 9\phi + sin 3\phi cos 5\phi} $

$\frac{2sin \phi  sin 9\phi + 2sin 3\phi sin 5\phi}{2sin \phi cos 9\phi + 2sin 3\phi cos 5\phi} = tan 6\phi$

$\frac{cos8\phi - cos10 \phi +cos2\phi-cos8\phi}{sin10\phi-sin8\phi+sin8\phi-sin2\phi}$

$\frac{cos2\phi - cos10 \phi }{sin10\phi-sin2\phi}$

$\frac{2 sin 6\phi  sin 4\phi }{ 2 cos 6\phi sin 4\phi}$

= tan 6∅.  terbukti


Contoh 11. Tunjukkan bahwa 

2 cos $\frac{\pi }{13}$ cos $\frac{9\pi }{13}$ + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$ = 0

Jawab:

(2 cos $\frac{\pi }{13}$)(2 cos $\frac{9\pi }{13}$) + (cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$)

= 2 cos $\frac{9\pi }{13}$ cos $\frac{\pi }{13}$ + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$

= cos ($\frac{9\pi }{13}$ + $\frac{\pi }{13}$) + cos ($\frac{9\pi }{13}$ - $\frac{\pi }{13}$) + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$,

[Karena, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]

= cos $\frac{10\pi }{13}$ + cos $\frac{8\pi }{13}$ + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$

= cos (π - cos $\frac{3\pi }{13}$) + cos (π - cos $\frac{5\pi }{13}$) + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$

= - cos $\frac{3\pi }{13}$ - cos $\frac{5\pi }{13}$ + cos $\frac{3\pi }{13}$ + cos $\frac{5\pi }{13}$

= 0


Contoh 12. Nyatakan cos A - cos B + cos C - cos (A + B + C) dalam bentuk hasil kali.

Jawab:

(cos A - cos B) + [cos C - cos (A + B + C)]

= 2 sin $\frac{1}{2}$(A + B) sin $\frac{1}{2}$(B - A) + 2 sin $\frac{1}{2}$(C + A + B + C) sin $\frac{1}{2}$(A + B + C - C)

= 2 sin $\frac{1}{2}$(A + B) {sin $\frac{1}{2}$(B - A) + sin $\frac{1}{2}$(A + B + 2C)}

= 2 sin $\frac{1}{2}$(A + B) {2 sin $\frac{1}{4}$(B - A + A + B + 2C) ∙ cos $\frac{1}{4}$(A + B + 2C - B + A)}

= 4 sin $\frac{1}{2}$(A + B) sin $\frac{1}{2}$(B + C) cos $\frac{1}{2}$(C + A).



Post a Comment for "Soal Trigonometri dan pembahasannya (Jumlah atau Selisih menjadi bentuk perkalian) 2"