Rumus Trigonometri Sudut Ganda (Sudut Rangkap)


Perbandingan trigonometri penting dari berbagai rumus sudut diberikan di bawah ini:

  1. sin 2A = 2 sin A cos A
  2. cos 2A = cos2 A - sin2 A
  3. cos 2A = 2 cos2 A - 1
  4. cos 2A = 1 - 2 sin2 A
  5. 1 + cos 2A = 2 cos2 A
  6. 1 - cos 2A = 2 sin2 A
  7. tan2A = $\frac{1 - cos 2A}{1 + cos 2A}$
  8. sin 2A = $\frac{2 tan A }{1 + tan^2A}$
  9. cos 2A = $\frac{1 - tan^2 A }{1 + tan^2A}$
  10. tan 2A = $\frac{2tan  A}{1-tan^2A}$
  11. sin 3A = 3 sin A - 4 sin3 A
  12. cos 3A = 4 cos3 A - 3 cos A
  13. tan 3A = $\frac{3 tan A - tan 3 A}{1-3tan^2A}$

Contoh Soal 1.

Buktikan bahwa cos 5x = 16 cos5 x - 20 cos3 x + 5 cos x

Jawab:

cos 5x = cos (2x + 3x)

= cos 2x cos 3x - sin 2x sin 3x

= (2 cos2 x - 1)(4 cos3 x - 3 cos x) - 2 sin x cos x (3 sin x - 4 sin3 x)

= 8 cos5 x - 10 cos3 x + 3 cos x - 6 cos x sin2 x + 8 cos x sin4 x

= 8 cos5 x - 10 cos3 x + 3 cos x - 6 cos x (1 - cos2 x) + 8 cos x (1 - cos2 x)2

= 8 cos5 x - 10 cos3 x + 3 cos x - 6 cos x + 6 cos3 x + 8 cos x - 16 cos3 x + 8 cos5 x

= 16 cos5 x - 20 cos3 x + 5 cos x


Contoh Soal 2.
Jika 13x = π, buktikan bahwa cos x cos 2x cos 3x cos 4x cos 5x cos 6x = 2-6

Jawab:

cos x cos 2x cos 3x cos 4x cos 5x cos 6x

= (
$\frac{1}{2}$ sinx)(2 sin x cos x) cos 2x cos 3x cos 4x cos 5x cos 6x

= (
$\frac{1}{2}$ sinx) sin 2x cos 2x cos 3x cos 4x cos 5x cos 6x

= ($\left (\frac{1}{2}  \right )^{2}$sinx)(2 sin 2x cos 2x) cos 3x cos 4x cos 5x cos 6x

= (
$\left (\frac{1}{2}  \right )^{3}$ sinx)(2 sin 4x cos 4x) cos 3x cos 5x cos 6x

= (
$\left (\frac{1}{2}  \right )^{3}$ sinx) sin 8x cos 3x cos 5x cos 6x

= (
$\left (\frac{1}{2}  \right )^{4}$ sinx)(2 sin 5x cos 5x) cos 3x cos 6x,

[Karena, sin 8x = sin (13x - 5x) = sin (π - 5x) = sin 5x, (diberikan 13x = π)]

= (
$\left (\frac{1}{2}  \right )^{4}$ sinx) sin 10x cos 3x cos 6x

= (
$\left (\frac{1}{2}  \right )^{5}$ sinx) (2 sin 3x cos 3x) cos 6x,

[Karena, sin 10x = sin (13x - 3x) = sin (π - 3x) = sin 3x, (diberikan 13x = π)]

= (
$\left (\frac{1}{2}  \right )^{6}$sinx) 2 sin 3x cos 6x

= (
$\left (\frac{1}{2}  \right )^{6}$ sinx) sin 12x

= (
$\left (\frac{1}{2}  \right )^{6}$ sin x) sin (13x - x)

= (
$\left (\frac{1}{2}  \right )^{6}$ sin x) sin (π - x), [Sejak, 13x = π]

= (
$\left (\frac{1}{2}  \right )^{6}$ sinx) sin x

$\left (\frac{1}{2}  \right )^{6}$. Terbukti

Post a Comment for "Rumus Trigonometri Sudut Ganda (Sudut Rangkap)"